DIODO SEMICONDUCTOR

¿QUÉ ES?

        El diodo semiconductor es un dispositivo que permite el paso de la corriente eléctrica en una única dirección. De forma simplificada, la curva característica de un diodo consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un corto circuito con muy pequeña resistencia eléctrica. 


En la siguiente imagen se puede notar un diodo el cual su banda gris representa el cátodo y la banda negra el ánodo.

        Se les suele denominar rectificadores, ya que son dispositivos capaces de convertir una corriente alterna en corriente continua. Se prueba que el multímetro funciona correctamente, para esto se pegan las puntas de prueba y se coloca el multímetro para medir continuidad, si el multímetro marca cero funciona correctamente.

Para saber si el diodo funciona correctamente se debe colocar la punta de prueba roja al ánodo y la punta de prueba negra al cátodo, el multímetro debe marcar aproximadamente el Voltaje de arranque (Si=0,6V;Ge=0,3), luego de esto de se intercambia de lugar las puntas de prueba de manera que no marque continuidad el multímetro

SIMBOLOGIA

Representación simbólica del diodo semiconductor

CARACTERISTICAS
  • Constan de dos partes, una llamada N y otra llamada P, sepatadps por una juntuta llamada barrera o union.
  • La barrera que separa a los diodos es de 0.3voltios en el diodo de germanio y de 0.6 voltios aproximadamente en el diodo de silicio.
  • El semiconductor tipo N tiene electrones libres (exceso de electrones) 
  • El semiconductor tipo P tiene huecos libres (ausencia o falta de electrones). 
  • Cuando una tensión positiva se aplica al lado P y una negativa al lado N, los electrones en el lado N son empujados al lado P y los electrones fluyen a través del material P mas allá de los límites del semiconductor.
El diodo se puede hacer funcionar de 2 maneras diferentes:

Polarización directa: Es cuando la corriente que circula por el diodo sigue la ruta de la flecha (la del  diodo), o sea del ánodo al cátodo. En este caso la corriente atraviesa con mucha facilidad el diodo comportándose éste prácticamente como un corto. circuito.


 Polarización inversa: Es cuando la corriente en el diodo desea circular en sentido opuesto a la flecha (la flecha del diodo), o se del cátodo al ánodo. En este caso la corriente no atraviesa el diodo, comportándose éste prácticamente como un circuito abierto.


Este funcionamiento se refiere al diodo ideal, esto quiere decir que el diodo se toma como un elemento perfecto (como se hace en casi todos los casos), tanto en polarización directa como en polarización inversa.

FUNCIONAMIENTO DE UN DIODO SEMICONDUCTOR

Representación esquemática de un diodo semiconductor.común formado por dos cristales de silicio (Si) de.polaridades o regiones diferentes: región “P” positiva (+) y.región “N” negativa (–) y el símbolo gráfico utilizado para.identificar este tipo de diodo en un esquema eléctrico o.electrónico. Para cualquier diodo la parte positiva (+).corresponde siempre al ánodo “A”  y  la parte negativa (–),.al cátodo “K”.

Cuando el terminal negativo o cátodo de un diodo se conecta al también polo negativo de una fuente de suministro de energía eléctrica (como puede ser una batería), si la tensión o voltaje aplicado es el adecuado para polarizarlo de forma directa, la corriente de electrones puede vencer la oposición que ofrece la barrera de potencial existente en el punto de unión o juntura que separa sus regiones “P” y “N” y comenzar a circular. Esto proporciona que los electrones en exceso con carga negativa (–) presentes en la región “N” (cátodo), una vez que adquieren la energía necesaria, atraviesen la barrera de potencial, se unan a los huecos libres con carga positiva (+) en la región “P” (ánodo) y continúen circulando por el circuito externo para terminar el recorrido en el polo positivo (+) de la batería. Para simplificar esta explicación no se ha incluido en el circuito externo de esta ilustración ninguna resistencia limitadora, no obstante ser imprescindible su uso cuando se trata de un circuito real.

En esta otra foto se puede apreciar la estructura física real de algunos tipos de diodos comunes, identificados en este circuito electrónico como DZ1 (diodo zener), D1, D2 y D6.

     La corriente de electrones que atraviesa un diodo produce normalmente un leve calentamiento en el punto de unión o juntura de sus dos regiones durante todo el tiempo que la corriente de electrones se encuentra circulando por su interior y por el resto del circuito eléctrico externo. Además, en el mismo momento que en ese recorrido un electrón atraviesa la barrera de potencial y se une a un hueco, emite un fotón que en el caso de los diodos comunes es imperceptible, pues las propiedades del silicio (Si) no son idóneas para emitir fotones de luz visible al ojo humano.

TIPOS DE DIODOS SEMICONDUCTOR

Diodo avalancha (TVS): Diodos que conducen en dirección contraria cuando el voltaje en inverso supera el voltaje de ruptura, también se conocen como diodos TVS. Electricámente son similares a los diodos Zener, pero funciona bajo otro fenómeno, el efecto avalancha. Esto sucede cuando el campo eléctrico inverso que atraviesa la unión p-n produce una onda de ionización, similar a una avalancha, produciendo una corriente. Los diodos avalancha están diseñados para operar en un voltaje inverso definido sin que se destruya. La diferencia entre el diodo avalancha (el cual tiene un voltaje de reversa de aproximadamente 6.2 V) y el diodo zener es que el ancho del canal del primero excede la "libre asociación" de los electrones, por lo que se producen colisiones entre ellos en el camino. La única diferencia práctica es que los dos tienen coeficientes de temperatura de polaridades opuestas (la disipación de calor máxima es mayor en un diodo zener, es por ello que estos se emplean principalmente en circuitos reguladores de tensión). Este tipo de diodos se emplean para eliminar voltajes y corrientes transitorios que pudieran provocar un mal funcionamiento de un bus de datos que conecte dos dispositivos sensibles a voltajes transitorios.

Diodo de Silicio: Suelen tener un tamaño milimétrico y, alineados, constituyen detectores multicanal que permiten obtener espectros en milisegundos. Son menos sensibles que los fotomultiplicadores. Es un semiconductor de tipo p (con huecos) en contacto con un semiconductor de tipo n (electrones). La radiación comunica la energía para liberar los electrones que se desplazan hacia los huecos, estableciendo una corriente eléctrica proporcional a la potencia radiante.

Diodo de cristal: Es un tipo de diodo de contacto. El diodo cristal consiste de un cable de metal afilado presionado contra un cristal semiconductor, generalmente galena o de una parte de carbón. El cable forma el ánodo y el cristal forma el cátodo. Los diodos de cristal tienen una gran aplicación en los radio a galena. Los diodos de cristal están obsoletos, pero puede conseguirse todavía de algunos fabricantes.

Diodo de corriente constante: Realmente es un JFET, con su compuerta conectada a la fuente, y funciona como un limitador de corriente de dos terminales análogo al diodo Zener, el cual limita el voltaje. Permiten una corriente a través de ellos para alcanzar un valor adecuado y así estabilizarse en un valor específico. También suele llamarse CLDs (por sus siglas en inglés) o diodo regulador de corriente.

Diodo túnel o Esaki: Tienen una región de operación que produce una resistencia negativa debido al efecto túnel, permitiendo amplificar señales y circuitos muy simples que poseen dos estados. Debido a la alta concentración de carga, los diodos túnel son muy rápidos, pueden usarse en temperaturas muy bajas, campos magnéticos de gran magnitud y en entornos con radiación alta. Por estas propiedades, suelen usarse en viajes espaciales.

Diodo Gunn: Similar al diodo túnel son construidos de materiales como GaAs o InP que produce una resistencia negativa. Bajo condiciones apropiadas, las formas de dominio del dipolo y propagación a través del diodo, permitiendo osciladores de ondas microondas de alta frecuencia.

Diodo emisor de luz o LED del acrónimo inglés, light-emitting diode: Es un diodo formado por un semiconductor con huecos en su banda de energía, tal como arseniuro de galio, los portadores de carga que cruzan la unión emiten fotones cuando se recombinan con los portadores mayoritarios en el otro lado. Dependiendo del material, la longitud de onda que se pueden producir varía desde el infrarrojo hasta longitudes de onda cercanas al ultravioleta. El potencial que admiten estos diodos dependen de la longitud de onda que ellos emiten: 2.1V corresponde al rojo, 4.0V al violeta. Los primeros ledes fueron rojos y amarillos. Los ledes blancos son en realidad combinaciones de tres ledes de diferente color o un led azul revestido con un centelleador amarillo. Los ledes también pueden usarse como fotodiodos de baja eficiencia en aplicaciones de señales. Un led puede usarse con un fotodiodo o fototransistor para formar un optoacoplador.

Diodo láser: Cuando la estructura de un led se introduce en una cavidad resonante formada al pulir las caras de los extremos, se puede formar un láser. Los diodos láser se usan frecuentemente en dispositivos de almacenamiento ópticos y para la comunicación óptica de alta velocidad.

Diodo térmico: Este término también se usa para los diodos convencionales usados para monitorear la temperatura a la variación de voltaje con la temperatura, y para refrigeradores termoeléctricos para la refrigeración termoeléctrica. Los refrigeradores termoeléctricos se hacen de semiconductores, aunque ellos no tienen ninguna unión de rectificación, aprovechan el comportamiento distinto de portadores de carga de los semiconductores tipo P y N para transportar el calor.

Fotodiodos: Todos los semiconductores están sujetos a portadores de carga ópticos. Generalmente es un efecto no deseado, por lo que muchos de los semiconductores están empacados en materiales que bloquean el paso de la luz. Los fotodiodos tienen la función de ser sensibles a la luz (fotocelda), por lo que están empacados en materiales que permiten el paso de la luz y son por lo general PIN (tipo de diodo más sensible a la luz). Un fotodiodo puede usarse en celdas solares, en fotometría o en comunicación óptica. Varios fotodiodos pueden empacarse en un dispositivo como un arreglo lineal o como un arreglo de dos dimensiones. Estos arreglos no deben confundirse con los dispositivos de carga acoplada.

Diodo con puntas de contacto: Funcionan igual que los diodos semiconductores de unión mencionados anteriormente aunque su construcción es más simple. Se fabrica una sección de semiconductor tipo n, y se hace un conductor de punta aguda con un metal del grupo 3 de manera que haga contacto con el semiconductor. Algo del metal migra hacia el semiconductor para hacer una pequeña región de tipo p cerca del contacto. El muy usado 1N34 (de fabricación alemana) aún se usa en receptores de radio como un detector y ocasionalmente en dispositivos analógicos especializados.

Diodo PIN: Un diodo PIN tiene una sección central sin doparse o en otras palabras una capa intrínseca formando una estructura p-intrínseca-n. Son usados como interruptores de alta frecuencia y atenuadores. También son usados como detectores de radiación ionizante de gran volumen y como fotodetectores. Los diodos PIN también se usan en la electrónica de potencia y su capa central puede soportar altos voltajes. Además, la estructura del PIN puede encontrarse en dispositivos semiconductores de potencia, tales como IGBTs, MOSFETs de potencia y tiristores.

Diodo Schottky: El diodo Schottky están construidos de un metal a un contacto de semiconductor. Tiene una tensión de ruptura mucho menor que los diodos pn. Su tensión de ruptura en corrientes de 1mA está en el rango de 0.15V a 0.45V, lo cual los hace útiles en aplicaciones de fijación y prevención de saturación en un transistor. También se pueden usar como rectificadores con bajas pérdidas aunque su corriente de fuga es mucho más alta que la de otros diodos. Los diodos Schottky son portadores de carga mayoritarios por lo que no sufren de problemas de almacenamiento de los portadores de carga minoritarios que ralentizan la mayoría de los demás diodos (por lo que este tipo de diodos tiene una recuperación inversa más rápida que los diodos de unión pn. Tienden a tener una capacitancia de unión mucho más baja que los diodos pn que funcionan como interruptores veloces y se usan para circuitos de alta velocidad como fuentes conmutadas, mezclador de frecuencias y detectores.

Stabistor: El stabistor (también llamado Diodo de Referencia en Directa) es un tipo especial de diodo de silicio cuyas características de tensión en directa son extremadamente estables. Estos dispositivos están diseñados especialmente para aplicaciones de estabilización en bajas tensiones donde se requiera mantener la tensión muy estable dentro de un amplio rango de corriente y temperatura.

Diodo Varicap: El diodo Varicap conocido como diodo de capacidad variable o varactor, es un diodo que aprovecha determinadas técnicas constructivas para comportarse, ante variaciones de la tensión aplicada, como un condensador variable. Polarizado en inversa, este dispositivo electrónico presenta características que son de suma utilidad en circuitos sintonizados (L-C), donde son necesarios los cambios de capacidad.


APLICACIONES


      Su principal aplicación ha sido “rectificar” corrientes alternas para convertirlas en directa (C.D.) y “detectar” corrientes de alta frecuencia (A.F.) o radiofrecuencia (R.F.) para reconvertirlas en audibles.

     Pueden ser utilizados en equipos que manejen grandes corrientes, aplicación que con diodos de vacío resultaba prohibitiva en ocasiones por el gran tamaño de éstos. Existen diodos semiconductores de muy pequeño tamaño para aplicaciones que no requieran conducciones de corrientes altas, tales como la demodulación en receptores de radio. Estos suelen estar encapsulados. en una caja cilíndrica de vidrio con los terminales en los extremos, aunque también se utiliza para ellos el encapsulado con plástico.



Comentarios